

OCR A Chemistry A-Level

Module 5 - Physical Chemistry & Transition Elements

<u>Redox</u>

Notes and Example Calculations

Answers given at the end of the booklet

🕟 www.pmt.education

▶ Image: Contraction PMTEducation

Electrode Potentials

Electrochemical cells can be made from two different metals immersed in salt solutions of their own ions and connected by a wire (external circuit). There are always two reactions within an electrochemical cell, oxidation and reduction, meaning it is a redox process.

The standard electrode potential of a half cell is the voltage measured against the standard hydrogen electrode under standard conditions. These are:

- 298 K
- 1 mol dm⁻³
- 100 kPa

To work out the overall cell potential (when two half cells are connected):

$$Emf_{(cell)} = E^{o}_{(right)} - E^{o}_{(left)}$$

The half cell undergoing a reduction reaction has the more positive electrode potential. The oxidation half cell has the more negative electrode potential.

Example 1:

Work out the overall cell potential half cells 1 and 2 are connected.

	Half-reaction	E/V
1	$Zn^{2+}(aq) + 2e \rightleftharpoons Zn(s)$	-0.76
2	$Fe^{2+}(aq) + 2e \neq Fe(s)$	-0.44
3	$Fe^{3+}(aq) + e \rightleftharpoons Fe^{2+}(aq)$	+0.77
4	$Ag^{+}(aq) + e \neq Ag(s)$	+0.80
5	$Cl_2(g) + 2e \neq 2Cl^-(aq)$	+1.36

Step 1: Work out which half cell undergoes reduction or oxidation.

 \Rightarrow The more positive half cell is cell 2 therefore half cell 2 undergoes reduction and therefore half cell 1 undergoes oxidation.

Step 2: Calculate the overall cell potential using the formula: $E^{\circ}_{cell} = E^{\circ}_{reduction} - E^{\circ}_{oxidation}$

-0.44 - (-0.76) = <u>0.32 V</u>

Example 2:

Work out the overall cell potential half cells 4 and 5 are connected.

	Half-reaction	E/V
1	$Zn^{2+}(aq) + 2e \rightleftharpoons Zn(s)$	-0.76
2	$Fe^{2+}(aq) + 2e \neq Fe(s)$	-0.44
3	$Fe^{3+}(aq) + e \rightleftharpoons Fe^{2+}(aq)$	+0.77
4	$Ag^{+}(aq) + e \neq Ag(s)$	+0.80
5	$Cl_2(g) + 2e \neq 2Cl^{-}(aq)$	+1.36

Step 1: Work out which half cell undergoes reduction or oxidation.

 \Rightarrow The more positive half cell is cell 5 therefore half cell 5 undergoes reduction and therefore half cell 4 undergoes oxidation.

Step 2: Calculate the overall cell potential using the formula: $E^{\circ}_{cell} = E^{\circ}_{reduction} - E^{\circ}_{oxidation}$

⇒ 1.36 - 0.8 = <u>0.56 V</u>

Worked Exam Style Question

Question 1

Use the standard electrode potentials in the table below to answer the questions that follow.

T	Fe ²⁺ (aq) + 2e [−] ← Fe(s)	<i>E</i> ⁹ = −0.44 ∨
Ш	$\vee^{3^+}(aq) + e^- \rightleftharpoons \vee^{2^+}(aq)$	<i>E</i> ⁹ = −0.26 ∨
III	$2H^+(aq) + 2e^- \Longrightarrow H_2(g)$	<i>E</i> ^e = 0.00 ∨
IV	$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(I)$	<i>E</i> ^o = +0.40 ∨

An electrochemical cell was set un hased on entems I and II

(ii) Determine the cell potential of this cell.

Step 1: Work out which half cell undergoes reduction or oxidation.

 \Rightarrow The more positive half cell is II therefore half cell II undergoes reduction and therefore half cell I undergoes oxidation.

Step 2: Calculate the overall cell potential using the formula: $E^{\circ}_{cell} = E^{\circ}_{reduction} - E^{\circ}_{oxidation}$

⇒ -0.26 - (-0.44) = <u>0.18 V</u>

Try this question...

1.

The following equations relate to half-cells involving iron and chromium ions.

$Fe^{3+} + e^- \Longrightarrow Fe^{2+}$	<i>E</i> [⊕] = +0.77 ∨
$Cr_2O_7^{2-} + 14H^+ + 6e^- \Longrightarrow 2Cr^{3+} + 7H_2O$	<i>E</i> ^⁰ = +1.33 ∨

A cell was set up by combining these two half-cells.

Determine the emf of the cell under standard conditions.

[1 mark]

Redox Titrations

Method for balancing half equations:

- 1. Balance all atoms except for oxygen and hydrogen.
- 2. Add H_2O to balance oxygens (if needed).
- 3. Add H⁺ ions to balance hydrogens (if needed).
- 4. Add e^{-} to balance out charges.

Example 1:

Write the full half equations for $Fe^{2+} \rightarrow Fe^{3+}$ and $Cr2O7^{2-} \rightarrow Cr^{3+}$ and then combine half equations.

Step 1: Write the full half equation for iron.

 $Fe^{^{2+}} \rightarrow Fe^{^{3+}}$

[The only thing that isn't balanced are the charges.]

 \Rightarrow Fe²⁺ \rightarrow Fe³⁺ + e⁻

Step 2: Write the full half equation for the chromium ion using the method above.

 $\mathrm{Cr_2O_7^{2\text{-}}} \to \mathrm{Cr^{3\text{+}}}$

[Balance oxygen.]

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$$

[Balance hydrogen.]

 $Cr_2O_7^{2-}$ + 14H⁺ \rightarrow 2Cr³⁺ + 7H₂O

[Balance changes]

$$\Rightarrow \operatorname{Cr_2O_7^{2^\circ}} + 14\mathrm{H^+} + 6\mathrm{e^-} \rightarrow 2\mathrm{Cr^{3^+}} + 7\mathrm{H_2O}$$

www.pmt.education

Step 3: Combine the two half equations.

$$\Rightarrow \operatorname{Cr}_2\operatorname{O}_7^{2-} + 14\operatorname{H}^+ + 6\operatorname{e}^- \rightarrow 2\operatorname{Cr}^{3+} + 7\operatorname{H}_2\operatorname{O}_7^{2-} + \operatorname{Fe}^{2+} \rightarrow \operatorname{Fe}^{3+} + \operatorname{e}^-$$

[Balance electrons.]

 $Fe^{2+} \rightarrow Fe^{3+} + e^{-}(x6)$

⇒

 $6Fe^{2+} \to 6Fe^{3+} + 6e^{-}$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ + 6e^{-} \to 6Fe^{3+} + 6e^{-} + 2Cr^{3+} + 7H_2O$

[Cancel the electrons]

 $\Rightarrow 6Fe^{2^{\star}} + Cr_2O_7^{2^{\star}} + 14H^{\star} \rightarrow 6Fe^{3^{\star}} + 2Cr^{3^{\star}} + 7H_2O$

Worked Exam Style Questions

Question 1

Redox titrations using $KMnO_4$ in acidic conditions can be used to analyse reducing agents. Acidified $KMnO_4$ is a strong oxidising agent, readily removing electrons:

 $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$

A student analysed a solution of hydrogen peroxide, $H_2O_2(aq)$, using a redox titration with $KMnO_4$ under acidic conditions. Under these conditions, $H_2O_2(aq)$ is a reducing agent.

The overall equation for the reaction is given below.

 $2MnO_4^- + 6H^+ + 5H_2O_2 \longrightarrow 2Mn^{2+} + 8H_2O + 5O_2$

(a) Deduce the simplest whole number half-equation for the oxidation of H_2O_2 under these conditions.

D PMTEducation

Step 1: Write the half equation for MnO_4^- from the overall equation.

 \Rightarrow 2MnO₄⁻ + 16H⁺ + 10e⁻ \rightarrow 2Mn²⁺ + 8H₂O

Step 2: Write in the missing components of the half equation for the oxidation of H_2O_2 .

[There are 16 H⁺ in the half equation for MnO_4^{-} therefore there must be 10H⁺ ions on the other side of the half equation for the oxidation of H₂O₂.]

 $5H_2O_2 \rightarrow 10H^+$

[5 oxygen molecules in the overall equation which are not present for the half equation of the reduction of MnO4⁻]

 $5H_2O_2 \rightarrow 10H^+ + 5O_2$

[Balance out the charges.]

 $5H_2O_2 + 10e^- \rightarrow 10H^+ + 5O_2$

[Cancel down the multiples.]

 \Rightarrow H₂O₂ + 2e⁻ \rightarrow 2H⁺ + O₂

Question 2

The student diluted 25.0 cm³ of a solution of hydrogen peroxide with water and made the solution up to 250.0 cm³. The student titrated 25.0 cm³ of this solution with 0.0200 mol dm⁻³ KMnO₄ under acidic conditions. The volume of KMnO₄(aq) required to reach the end-point was 23.45 cm³.

- Calculate the concentration, in g dm⁻³, of the **undiluted** hydrogen peroxide solution.
- What volume of oxygen gas, measured at RTP, would be produced during this titration?

[6 marks]

$$H_2O_2 + 2e^- \rightarrow 2H^+ + O_2$$

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$
 $2MnO_4^- + 6H^+ + 5H_2O_2 \longrightarrow 2Mn^{2+} + 8H_2O + 5O_2$

D O

Part 1

Step 1: Calculate the number of moles of $KMnO_4/MnO_4^-$ ions.

⇒ Moles = concentration x volume = $0.02 \times (23.45/1000)$ = $4.69 \times 10^{-4} \text{ moldm}^{-3}$

Step 2: Find the molar ratio.

Molar ratio: MnO_4^- : $H_2O_2^-$ 2 : 5

Step 3: Therefore work out the moles of H_2O_2 .

 $1.5 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3}$ moles

Step 4: Work out the concentration of H_2O_2 in this sample.

⇒ Concentration = moles / volume = $1.1725 \times 10^{-3} / 0.025$ = $0.0469 \text{ moldm}^{-3}$

Step 5: Work out the concentration of the undiluted of solution.

The dilution factor is 10. $(25 \times 10 = 250)$

 \Rightarrow 0.0469 x 10 = 0.469 moldm⁻³

Step 5: Convert mol dm⁻³ to g dm⁻³.

Mass = mr x mol

```
\Rightarrow \text{Mr of H}_2\text{O}_2 = 2 + (16 \times 2)= 34
```

⇒ 0.469 x 34 = <u>15.9 gdm</u>-³

Part 2

Step 1: Using stoichiometry work out the number of moles of oxygen molecules.

```
Molar ratio: H_2O_2 : O_2
1 : 1

\Rightarrow Moles of oxygen = 1.1725 x 10<sup>-3</sup>
```


Step 2: Work out the volume of gas using: moles x 24 = volume

⇒ 1.1725 x 10⁻³ x 24 = <u>0.0281 dm</u>³

Question 3

Haematite is the main ore of iron. The percentage of iron in a sample of haematite can be determined using the method below.

Method

- Stage 1. An excess of concentrated hydrochloric acid is added to a 3.25g sample of haematite. The iron(III) oxide in the haematite reacts to form a solution containing Fe³⁺ ions.
- Stage 2. An excess of aqueous tin(II) chloride is added. Sn^{2+} reduces the Fe³⁺ present to Fe²⁺. Excess Sn^{2+} is removed.
- Stage 3. The solution is diluted and made up to 250.0 cm³ in a volumetric flask.
- Stage 4. A 25.0 cm³ sample of this solution is pipetted into a conical flask.
- Stage 5. The solution in the conical flask is titrated with 0.0200 mol dm⁻³ aqueous potassium dichromate(VI), K₂Cr₂O₇. The Fe²⁺ ions are oxidised to Fe³⁺ ions.

Stage 6. Stages 4 and 5 are repeated to obtain an average titre of 26.5 cm³.

You are provided with the following electrode potentials.

You may need to use this information throughout this question.

Sn ⁴⁺ (aq) + 2e ⁻	\rightleftharpoons	Sn ²⁺ (aq)	$E^{+} = +0.15V$
Fe ³⁺ (aq) + e ⁻	\rightleftharpoons	Fe ²⁺ (aq)	$E^{+} = +0.77V$
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$	\rightleftharpoons	$2Cr^{3+}(aq) + 7H_2O(I)$	E^{+} = +1.33V
$Cl_{2}(aq) + 2e^{-}$	\rightleftharpoons	2C1-(aq)	$E^{+} = +1.36V$
MnO4-(aq) + 8H+(aq) + 5e-	\rightleftharpoons	Mn ²⁺ (aq) + 4H ₂ O(I)	E ⁺ = +1.51V

(a) Write an equation for the reaction between iron(III) oxide and concentrated hydrochloric acid, occurring in Stage 1.
End of the stage 1.

$$Fe_2O_3 + 6H \longrightarrow 2Fe^- + 5H_2O$$
[1]

- (b) Write equations for the reactions involving iron ions in Stages 2 and 5.
 - stage 2 $Sn^{2^+} + 2Fe^{3^+} \longrightarrow Sn^{4^+} + 2Fe^{2^+}$ stage 5 $6Fe^{2^+} + Cr_2O_7^{2^-} + 14H^+ \longrightarrow 6Fe^{3^+} + 2Cr^{3^+} + 7H_2O$ [2]

(c) Calculate the percentage by mass of iron in the haematite ore.

[5 marks]

Step 1: Work out the number of moles of potassium dichromate.

 $\Rightarrow Moles = concentration x volume$ = 0.02 x (26.5/1000) $= 5.3 x 10^{-4}$

Step 2: Using stoichiometry work out the number of Fe^{3+} ions.

Molar ratio: $Cr_2O_7 : Fe^{3+}$ 1 : 6

 \Rightarrow 5.3 x 10⁻⁴ x 6 = 3.18 x 10⁻³

Step 3: Work out the number of moles in the original 250 cm³.

The dilution factor is 10.

 \Rightarrow 3.18 x 10⁻³ x 10 = 3.18 x 10⁻²

Step 4: Work out the mass of Fe^{3+} ions.

```
\Rightarrow Mass = Mr x mole= 55.8 x 3.18 x 10^{-2}
```

= 1.77444 g

Step 5: Calculate the percentage of mass of iron.

(1.77444 / 3.25) x 100 = <u>54.6 %</u>

▶ Image: PMTEducation

Try these questions...

2.

The Dissolved Oxygen Concentration (DOC) in rivers and lakes is important for aquatic life. If the DOC falls below 5 mg dm⁻³, most species of fish cannot survive.

Environmental chemists can determine the DOC in water using the procedure below.

 A sample of river water is shaken with aqueous Mn²⁺ and aqueous alkali. The dissolved oxygen oxidises the Mn²⁺ to Mn³⁺, forming a pale brown precipitate of Mn(OH)₃.

 $O_2(aq) + 4Mn^{2+}(aq) + 8OH^{-}(aq) + 2H_2O(I) \rightarrow 4Mn(OH)_3(s)$

 The Mn(OH)₃ precipitate is then reacted with an excess of aqueous potassium iodide, which is oxidised to iodine, I₂.

 $2Mn(OH)_3(s) + 2I^{-}(aq) \rightarrow I_2(aq) + 2Mn(OH)_2(s) + 2OH^{-}(aq)$

 The iodine formed is then determined by titration with aqueous sodium thiosulfate, Na₂S₂O₃(aq).

$$2\mathrm{S_2O_3^{2-}(aq)} + \mathrm{I_2(aq)} \rightarrow \mathrm{S_4O_6^{2-}(aq)} + 2\mathrm{I^-(aq)}$$

A 25.0 cm³ sample of river water was analysed using the procedure above.

The titration required 24.6 cm³ of 0.00100 mol dm⁻³ Na₂S₂O₃(aq).

(a) (i) Calculate the DOC of the sample of river water, in mg dm⁻³.

[4 marks]

3.

Brass is an alloy which contains copper.

The percentage of copper in brass can be determined using the steps below.

Step 12.80g of brass is reacted with an excess of concentrated nitric acid, HNO3.The half-equations taking place are shown below.

 $\begin{array}{l} \text{Cu(s)} \longrightarrow \text{Cu}^{2+}(\text{aq}) + 2\text{e}^{-} \\ \text{2HNO}_3(\text{I}) + \text{e}^{-} \longrightarrow \text{NO}_3^{-}(\text{aq}) + \text{NO}_2(\text{g}) + \text{H}_2\text{O}(\text{I}) \end{array}$

- Step 2 Excess aqueous sodium carbonate is added to neutralise any acid. The mixture effervesces and a precipitate forms.
- **Step 3** The precipitate is reacted with ethanoic acid to form a solution which is made up to 250 cm³ with water.

Step 4	A 25.0 cm ³ sample of the solution is pipetted into a conical flask and an excess of aqueous potassium iodide is added. A precipitate of copper(I) iodide and a solution of iodine, I ₂ (aq), forms.
Step 5	The resulting mixture is titrated with 0.100 mol dm ⁻³ sodium thiosulfate to estimate the iodine present:
	$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$
Step 6	Steps 4 and 5 are repeated to obtain an average titre of 29.8 cm ³ .

- For steps 1, 2 and 4, write ionic equations, including state symbols, for the reactions taking place.
- Determine the percentage, by mass, of copper in the brass. Give your answer to **one** decimal place.

[9 marks]

🕟 www.pmt.education

▶ Image: Contraction Description

<u>Answers</u>

1

Q1.

Q2.

Answer	Mark	Guidance
amount $S_2O_3^{2-}$ used = $0.00100 \times \frac{24.6}{1000} = 2.46 \times 10^{-5} \text{ mol }\checkmark$ amount O_2 in 25 cm ³ sample = $\frac{2.46 \times 10^{-5}}{4} = 6.15 \times 10^{-6} \text{ mol }\checkmark$		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0000246 (mol) ECF = $\frac{\text{answer above}}{4}$ ALLOW 0.00000615 g
Concentration of O_2 in sample = $6.15 \times 10^{-6} \times \frac{1000}{25} = 2.46 \times 10^{-4} \pmod{\text{dm}^{-3}} \checkmark$ mass concentration of O_2 in mg dm ⁻³ = $2.46 \times 10^{-4} \times 32$ g = $7.872 \times 10^{-3} (\text{g dm}^{-3})$ = $7.872 \pmod{\text{dm}^{-3}} \checkmark$	4	ECF answer above $\times \frac{1000}{25}$ ALLOW 0.000246 g ECF = answer above $\times 32 \times 1000$ ALLOW 7.9 OR 7.87 ALLOW 2 SF up to calculator value Must be in mg for mark Note: Candidate may work out steps 3 and 4 in the opposite order, <i>ie</i> mass of O ₂ in sample = 6.15 $\times 10^{-6} \times 32 \times 1000 = 1.968 \times 10^{-1}$ mg mass concentration of O ₂ in mg dm ⁻³ = 1.968 $\times 10^{-1} \times \frac{1000}{25} = 7.872$ (mg dm ⁻³)

Q3.

www.pmt.education 🖸 💿 🕜 MTEducation

0

Answer	Mark	Guidance
step 1 Cu + 4HNO ₃ \longrightarrow Cu ²⁺ + 2NO ₃ ⁻ + 2NO ₂ + 2H ₂ O OR Cu + 2H ⁺ + 2HNO ₃ \longrightarrow Cu ²⁺ + 2NO ₂ + 2H ₂ O OR Cu + 4H ⁺ + 2NO ₃ ⁻ \longrightarrow Cu ²⁺ + 2NO ₂ + 2H ₂ O \checkmark step 2 2 equations with 1 mark for each Cu ²⁺ + CO ₃ ²⁻ \longrightarrow CuCO ₃ \checkmark 2H ⁺ + CO ₃ ²⁻ \longrightarrow H ₂ O + CO ₂ \checkmark step 4 2Cu ²⁺ + 4I ⁻ \longrightarrow 2Cul + I ₂ \checkmark	4	ANNOTATE ALL Q8 WITH TICKS AND CROSSES, etc ALLOW multiples throughout IGNORE state symbols throughout ALLOW Cu(NO ₃) ₂ for Cu ²⁺ + 2NO ₃ ⁻ AWARD 2 MARKS for a combined equation: Cu ²⁺ + 2H ⁺ + 2CO ₃ ²⁻ \longrightarrow CuCO ₃ + H ₂ O + CO ₂ \checkmark DO NOT ALLOW 2H ⁺ + CO ₃ ²⁻ \longrightarrow H ₂ CO ₃ ALLOW 2Cu ²⁺ + 4KI \longrightarrow 2Cul + l ₂ + 4K ⁺ ALLOW Cu ²⁺ + $\Gamma \longrightarrow$ Cu ⁺ + $\frac{1}{2}$
FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 67.6%, award 5 marks. Ignore any attempted equation in step 4		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
shown with 1:1 molar ratio, award 5 marks for ECF amount S ₂ O ₃ ²⁻ used = 0.100 x $\frac{29.8}{1000}$ = 2.98 x 10 ⁻³ mol \checkmark		Working must be to 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49
amount $I_2 = 1.49 \times 10^{-3}$ mol OR amount $Cu^{2+} = 2.98 \times 10^{-3}$ mol \checkmark		ECF answer above
amount Cu ²⁺ in original 250 cm ³ = 10 x 2.98 x 10 ⁻³ = 2.98 x 10 ⁻² mol \checkmark Mass of Cu/Cu ²⁺ in brass = 63.5 x 2.98 x 10 ⁻² g = 1.8923 g \checkmark percentage Cu in brass = $\frac{1.8923}{2.80} \times 100$ = 67.6% \checkmark		ECF 10 x answer above ECF 63.5 x answer above ALLOW 1.88 g ECF answer above 2.80 ×100 Answer must be to one decimal place
MUST be to one decimal place (in the question)	5	ALLOW % Cu = 67.5 % IF mass of Cu has been rounded to 1.89 g in previous step Common ECFs: 6.76% x10 missing 3/5 marks for calculation 2 d.p. MS states 1 d.p. 33.8% IF Cu ²⁺ /l ₂ in step 4 equation with 2:1 ratio OR not attempted, response. 4/5 marks for calculation (moles Cu ²⁺ incorrect)

 \odot