OCR A Chemistry A-Level Module 5 - Physical Chemistry \& Transition Elements

Redox
Notes and Example Calculations

Answers given at the end of the booklet

Electrode Potentials

Electrochemical cells can be made from two different metals immersed in salt solutions of their own ions and connected by a wire (external circuit). There are always two reactions within an electrochemical cell, oxidation and reduction, meaning it is a redox process.

The standard electrode potential of a half cell is the voltage measured against the standard hydrogen electrode under standard conditions. These are:

- 298 K
- $1 \mathrm{~mol} \mathrm{dm}^{-3}$
- $\quad 100 \mathrm{kPa}$

To work out the overall cell potential (when two half cells are connected):

$$
\operatorname{Emf}_{(\text {cell })}=\mathrm{E}_{(\text {right })}^{\circ}-\mathrm{E}_{(\text {left })}^{\circ}
$$

The half cell undergoing a reduction reaction has the more positive electrode potential. The oxidation half cell has the more negative electrode potential.

Example 1:

Work out the overall cell potential half cells 1 and 2 are connected.

	Half-reaction	E / V
1	$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e} \leftrightharpoons \mathrm{Zn}(\mathrm{s})$	-0.76
2	$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e} \leftrightharpoons \mathrm{Fe}(\mathrm{s})$	-0.44
3	$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e} \leftrightharpoons \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
4	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e} \leftrightharpoons \mathrm{Ag}(\mathrm{s})$	+0.80
5	$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e} \leftrightharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36

Step 1: Work out which half cell undergoes reduction or oxidation.
\Rightarrow The more positive half cell is cell 2 therefore half cell 2 undergoes reduction and therefore half cell 1 undergoes oxidation.

Step 2: Calculate the overall cell potential using the formula: $\mathrm{E}^{\circ}{ }_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\text {reduction }}-\mathrm{E}^{\circ}{ }_{\text {oxidation }}$ $-0.44-(-0.76)=\underline{\mathbf{0 . 3 2} \mathbf{V}}$

Example 2:

Work out the overall cell potential half cells 4 and 5 are connected.

	Half-reaction	E / V
1	$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e} \leftrightharpoons \mathrm{Zn}(\mathrm{s})$	-0.76
2	$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e} \leftrightharpoons \mathrm{Fe}(\mathrm{s})$	-0.44
3	$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e} \leftrightharpoons \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
4	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e} \leftrightharpoons \mathrm{Ag}(\mathrm{s})$	+0.80
5	$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e} \leftrightharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36

Step 1: Work out which half cell undergoes reduction or oxidation.
\Rightarrow The more positive half cell is cell 5 therefore half cell 5 undergoes reduction and therefore half cell 4 undergoes oxidation.

Step 2: Calculate the overall cell potential using the formula: $\mathrm{E}_{\text {cell }}^{\circ}=\mathrm{E}^{\circ}{ }_{\text {reduction }}-\mathrm{E}^{\circ}{ }_{\text {oxidation }}$ $\Rightarrow 1.36-0.8=\underline{\mathbf{0 . 5 6} \mathbf{V}}$

Worked Exam Style Question

Question 1

Use the standard electrode potentials in the table below to answer the questions that follow.

I	$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{s})$	$E^{\circ}=-0.44 \mathrm{~V}$
II	$\mathrm{V}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{V}^{2+}(\mathrm{aq})$	$E^{\circ}=-0.26 \mathrm{~V}$
III	$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})$	$E^{\circ}=0.00 \mathrm{~V}$
IV	$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	$E^{\circ}=+0.40 \mathrm{~V}$

(ii) Determine the cell potential of this cell.

Step 1: Work out which half cell undergoes reduction or oxidation.
\Rightarrow The more positive half cell is II therefore half cell II undergoes reduction and therefore half cell I undergoes oxidation.

Step 2: Calculate the overall cell potential using the formula: $\mathrm{E}^{\circ}{ }_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\text {reduction }}-\mathrm{E}^{\circ}{ }_{\text {oxidation }}$
$\Rightarrow-0.26-(-0.44)=\underline{\mathbf{0 . 1 8} \mathbf{V}}$

Try this question...

1.

The following equations relate to half-cells involving iron and chromium ions.

$$
\begin{array}{cl}
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+} & E^{\ominus}=+0.77 \mathrm{~V} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} & E^{0}=+1.33 \mathrm{~V}
\end{array}
$$

A cell was set up by combining these two half-cells.

Determine the emf of the cell under standard conditions.

Redox Titrations

Method for balancing half equations:

1. Balance all atoms except for oxygen and hydrogen.
2. Add $\mathrm{H}_{2} \mathrm{O}$ to balance oxygens (if needed).
3. Add H^{+}ions to balance hydrogens (if needed).
4. Add e^{-}to balance out charges.

Example 1:

Write the full half equations for $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}$ and $\mathrm{Cr} 2 \mathrm{O}^{2-} \rightarrow \mathrm{Cr}^{3+}$ and then combine half equations.

Step 1: Write the full half equation for iron.
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}$
[The only thing that isn't balanced are the charges.]
$\Rightarrow \mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$

Step 2: Write the full half equation for the chromium ion using the method above.
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow \mathrm{Cr}^{3+}$
[Balance oxygen.]
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
[Balance hydrogen.]
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
[Balance changes]
$\Rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

Step 3: Combine the two half equations.

$$
\begin{aligned}
\Rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} & \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{Fe}^{2+} & \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}
\end{aligned}
$$

[Balance electrons.]

$$
\begin{aligned}
& \mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}(\mathrm{x} 6) \\
& \Rightarrow \quad \begin{aligned}
6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+6 \mathrm{e}^{-}
\end{aligned} \\
& \Rightarrow \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 6 \mathrm{Fe}^{3+}+6 \mathrm{e}^{-}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

[Cancel the electrons]
$\Rightarrow 6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

Worked Exam Style Questions

Question 1

Redox titrations using KMnO_{4} in acidic conditions can be used to analyse reducing agents. Acidified KMnO_{4} is a strong oxidising agent, readily removing electrons:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

A student analysed a solution of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$, using a redox titration with KMnO_{4} under acidic conditions. Under these conditions, $\mathrm{H}_{2} \mathrm{O}_{2}$ is a reducing agent.

The overall equation for the reaction is given below.

$$
2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}
$$

(a) Deduce the simplest whole number half-equation for the oxidation of $\mathrm{H}_{2} \mathrm{O}_{2}$ under these conditions.

Step 1: Write the half equation for $\mathrm{MnO}_{4}{ }^{-}$from the overall equation.
$\Rightarrow 2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{e}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$

Step 2: Write in the missing components of the half equation for the oxidation of $\mathrm{H}_{2} \mathrm{O}_{2}$.
[There are $16 \mathrm{H}^{+}$in the half equation for MnO_{4}^{-}therefore there must be $10 \mathrm{H}^{+}$ions on the other side of the half equation for the oxidation of $\mathrm{H}_{2} \mathrm{O}_{2}$.]
$5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 10 \mathrm{H}^{+}$
[5 oxygen molecules in the overall equation which are not present for the half equation of the reduction of $\left.\mathrm{MnO} 4^{-}\right]$
$5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 10 \mathrm{H}^{+}+5 \mathrm{O}_{2}$
[Balance out the charges.]
$5 \mathrm{H}_{2} \mathrm{O}_{2}+10 \mathrm{e}^{-} \rightarrow 10 \mathrm{H}^{+}+5 \mathrm{O}_{2}$
[Cancel down the multiples.]
$\Rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow \mathbf{2 \mathrm { H } ^ { + }}+\mathrm{O}_{\mathbf{2}}$

Question 2

The student diluted $25.0 \mathrm{~cm}^{3}$ of a solution of hydrogen peroxide with water and made the solution up to $250.0 \mathrm{~cm}^{3}$. The student titrated $25.0 \mathrm{~cm}^{3}$ of this solution with $0.0200 \mathrm{moldm}^{-3}$ KMnO_{4} under acidic conditions. The volume of $\mathrm{KMnO}_{4}(\mathrm{aq})$ required to reach the end-point was $23.45 \mathrm{~cm}^{3}$.

- Calculate the concentration, in gdm^{-3}, of the undiluted hydrogen peroxide solution.
- What volume of oxygen gas, measured at RTP, would be produced during this titration?

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}^{+}+\mathrm{O}_{2} \\
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}
\end{gathered}
$$

Part 1
Step 1: Calculate the number of moles of $\mathrm{KMnO}_{4} / \mathrm{MnO}_{4}{ }^{-}$ions.
\Rightarrow Moles $=$ concentration \times volume
$=0.02 \times(23.45 / 1000)$
$=\underline{4.69 \times 10^{-4} \mathbf{~ m o l d m}^{-3}}$

Step 2: Find the molar ratio.

Molar ratio: $\mathrm{MnO}_{4}^{-}: \mathrm{H}_{2} \mathrm{O}_{2}$

$$
2: 5
$$

Step 3: Therefore work out the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$.
$1.5 \times 4.69 \times 10^{-4}=1.1725 \times 10^{-3}$ moles

Step 4: Work out the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in this sample.
\Rightarrow Concentration $=$ moles $/$ volume

$$
\begin{aligned}
& =1.1725 \times 10^{-3} / 0.025 \\
& =0.0469 \mathrm{moldm}^{-3}
\end{aligned}
$$

Step 5: Work out the concentration of the undiluted of solution.

The dilution factor is 10 .
($25 \times 10=250$)
$\Rightarrow 0.0469 \times 10=0.469 \mathrm{moldm}^{-3}$

Step 5: Convert mol dm ${ }^{-3}$ to $\mathrm{g} \mathrm{dm}^{-3}$.

Mass $=\mathrm{mr} \times \mathrm{mol}$
$\Rightarrow \mathrm{Mr}$ of $\mathrm{H}_{2} \mathrm{O}_{2}=2+(16 \times 2)$

$$
=34
$$

$\Rightarrow 0.469 \times 34=15.9 \mathrm{gdm}^{-3}$

Part 2
Step 1: Using stoichiometry work out the number of moles of oxygen molecules.

Molar ratio: $\quad \mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{O}_{2}$

$$
1: 1
$$

\Rightarrow Moles of oxygen $=1.1725 \times 10^{-3}$

Step 2: Work out the volume of gas using: moles $\times 24=$ volume
$\Rightarrow 1.1725 \times 10^{-3} \times 24=\underline{\mathbf{0 . 0 2 8 1} \mathrm{dm}^{3}}$

Question 3

Haematite is the main ore of iron. The percentage of iron in a sample of haematite can be determined using the method below.

Method

Stage 1. An excess of concentrated hydrochloric acid is added to a 3.25 g sample of haematite. The iron(III) oxide in the haematite reacts to form a solution containing Fe^{3+} ions.

Stage 2. An excess of aqueous $\mathrm{tin}(\mathrm{II})$ chloride is added. Sn^{2+} reduces the Fe^{3+} present to Fe^{2+}. Excess Sn^{2+} is removed.

Stage 3. The solution is diluted and made up to $250.0 \mathrm{~cm}^{3}$ in a volumetric flask.
Stage 4. A $25.0 \mathrm{~cm}^{3}$ sample of this solution is pipetted into a conical flask.
Stage 5. The solution in the conical flask is titrated with $0.0200 \mathrm{moldm}^{-3}$ aqueous potassium dichromate(VI), $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. The Fe^{2+} ions are oxidised to Fe^{3+} ions.

Stage 6. Stages 4 and 5 are repeated to obtain an average titre of $26.5 \mathrm{~cm}^{3}$.
You are provided with the following electrode potentials.
You may need to use this information throughout this question.

$$
\begin{aligned}
\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightleftharpoons \mathrm{Sn}^{2+}(\mathrm{aq}) & E^{\ominus}=+0.15 \mathrm{~V} \\
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} & \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq}) & E^{\ominus}=+0.77 \mathrm{~V} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} & \rightleftharpoons 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & E^{\ominus}=+1.33 \mathrm{~V} \\
\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightleftharpoons 2 \mathrm{Cl}(\mathrm{aq}) & E^{\ominus}=+1.36 \mathrm{~V} \\
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} & \rightleftharpoons \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & E^{\ominus}=+1.51 \mathrm{~V}
\end{aligned}
$$

(a) Write an equation for the reaction between iron(III) oxide and concentrated hydrochloric acid, occurring in Stage 1.
$\mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Fe}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$
(b) Write equations for the reactions involving iron ions in Staqes 2 and 5.

Stage $2 \mathrm{Sn}^{2+}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Sn}^{4+}+2 \mathrm{Fe}^{2+}$
Stage $5 \ldots .6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \xrightarrow[6 \mathrm{Fe}^{3+}]{\longrightarrow}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(c) Calculate the percentage by mass of iron in the haematite ore.

Step 1: Work out the number of moles of potassium dichromate.
\Rightarrow Moles $=$ concentration \times volume

$$
=0.02 \times(26.5 / 1000)
$$

$$
=5.3 \times 10^{-4}
$$

Step 2: Using stoichiometry work out the number of Fe^{3+} ions.
Molar ratio: $\mathrm{Cr}_{2} \mathrm{O}_{7}: \mathrm{Fe}^{3+}$

$$
1: 6
$$

$\Rightarrow 5.3 \times 10^{-4} \times 6=3.18 \times 10^{-3}$

Step 3: Work out the number of moles in the original $250 \mathrm{~cm}^{3}$.
The dilution factor is 10 .
$\Rightarrow 3.18 \times 10^{-3} \times 10=3.18 \times 10^{-2}$

Step 4: Work out the mass of Fe^{3+} ions.
\Rightarrow Mass $=\mathrm{Mr} \times$ mole

$$
=55.8 \times 3.18 \times 10^{-2}
$$

$$
=1.77444 \mathrm{~g}
$$

Step 5: Calculate the percentage of mass of iron.
$(1.77444 / 3.25) \times 100=\underline{54.6 \%}$

Try these questions...

2.

The Dissolved Oxygen Concentration (DOC) in rivers and lakes is important for aquatic life. If the DOC falls below $5 \mathrm{mg} \mathrm{dm}^{-3}$, most species of fish cannot survive.

Environmental chemists can determine the DOC in water using the procedure below.

- A sample of river water is shaken with aqueous Mn^{2+} and aqueous alkali. The dissolved oxygen oxidises the Mn^{2+} to Mn^{3+}, forming a pale brown precipitate of $\mathrm{Mn}(\mathrm{OH})_{3}$.

$$
\mathrm{O}_{2}(\mathrm{aq})+4 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{Mn}(\mathrm{OH})_{3}(\mathrm{~s})
$$

- The $\mathrm{Mn}(\mathrm{OH})_{3}$ precipitate is then reacted with an excess of aqueous potassium iodide, which is oxidised to iodine, I_{2}.

$$
2 \mathrm{Mn}(\mathrm{OH})_{3}(\mathrm{~s})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Mn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

- The iodine formed is then determined by titration with aqueous sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$.

$$
2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})
$$

A $25.0 \mathrm{~cm}^{3}$ sample of river water was analysed using the procedure above.
The titration required $24.6 \mathrm{~cm}^{3}$ of $0.00100 \mathrm{moldm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$.
(a) (i) Calculate the DOC of the sample of river water, in $\mathrm{mg} \mathrm{dm}^{-3}$
3.

Brass is an alloy which contains copper.
The percentage of copper in brass can be determined using the steps below.

Step $1 \quad 2.80 \mathrm{~g}$ of brass is reacted with an excess of concentrated nitric acid, HNO_{3}. The half-equations taking place are shown below.

$$
\begin{aligned}
& \mathrm{Cu}(\mathrm{~s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \\
& 2 \mathrm{HNO}_{3}(\mathrm{l})+\mathrm{e}^{-} \xrightarrow{\rightarrow} \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

Step 2 Excess aqueous sodium carbonate is added to neutralise any acid. The mixture effervesces and a precipitate forms.

Step 3 The precipitate is reacted with ethanoic acid to form a solution which is made up to $250 \mathrm{~cm}^{3}$ with water.

Step 4 A $25.0 \mathrm{~cm}^{3}$ sample of the solution is pipetted into a conical flask and an excess of aqueous potassium iodide is added.
A precipitate of copper(I) iodide and a solution of iodine, $\mathrm{I}_{2}(\mathrm{aq})$, forms.
Step 5 The resulting mixture is titrated with $0.100 \mathrm{moldm}^{-3}$ sodium thiosulfate to estimate the iodine present:

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}(\mathrm{aq})
$$

Step 6 Steps 4 and $\mathbf{5}$ are repeated to obtain an average titre of $29.8 \mathrm{~cm}^{3}$.

- For steps 1,2 and 4, write ionic equations, including state symbols, for the reactions taking place.
- Determine the percentage, by mass, of copper in the brass.

Give your answer to one decimal place.

Answers

Q1.

$$
\mathrm{Emf}=(+) 0.56 \mathrm{~V}
$$

Q2.

Answer	Mark	Guidance
amount $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ used $=0.00100 \times \frac{24.6}{1000}=2.46 \times 10^{-5} \mathrm{~mol}$ amount O_{2} in $25 \mathrm{~cm}^{3}$ sample $=\frac{2.46 \times 10^{-5}}{4}=6.15 \times 10^{-6} \mathrm{~mol}$ Concentration of O_{2} in sample $=6.15 \times 10^{-6} \times \frac{1000}{25}=2.46 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ mass concentration of O_{2} in $\mathrm{mg} \mathrm{dm}^{-3}$ $=2.46 \times 10^{-4} \times 32 \mathrm{~g}=7.872 \times 10^{-3}\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ $=7.872\left(\mathrm{mg} \mathrm{dm}^{-3}\right)^{v}$	4	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0000246 (mol) $\text { ECF }=\frac{\text { answer above }}{4}$ ALLOW 0.00000615 g ECF answer above $\times \frac{1000}{25}$ ALLOW 0.000246 g ECF $=$ answer above $\times 32 \times 1000$ ALLOW 7.9 OR 7.87 ALLOW 2 SF up to calculator value Must be in mg for mark Note: Candidate may work out steps 3 and 4 in the opposite order, ie mass of O_{2} in sample $=6.15 \times 10^{-6} \times 32 \times 1000=1.968 \times 10^{-1} \mathrm{mg}$ mass concentration of O_{2} in $\mathrm{mg} \mathrm{dm}^{-3}$ $=1.968 \times 10^{-1} \times \frac{1000}{25}=7.872\left(\mathrm{mg} \mathrm{dm}^{-3}\right)$

Q3.

Answer	Mark	Guidance
$\begin{aligned} & \text { step 1 } \\ & \mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{3}^{-}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \mathrm{Cu}+2 \mathrm{H}^{+}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \mathrm{Cu}+4 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { step 2 } \\ & \text { 2 equations with 1 mark for each } \\ & \mathrm{Cu}^{2+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{CuCO}_{3} \checkmark \\ & 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark \\ & \text { step 4 } \\ & 2 \mathrm{Cu}^{2+}+41^{-} \longrightarrow 2 \mathrm{Cul}+\mathrm{I}_{2} \checkmark \end{aligned}$	4	ANNOTATE ALL Q8 WITH TICKS AND CROSSES, etc ALLOW multiples throughout IGNORE state symbols throughout ALLOW Cu($\left.\mathrm{NO}_{3}\right)_{2}$ for $\mathrm{Cu}^{2+}+2 \mathrm{NO}_{3}{ }^{-}$ AWARD 2 MARKS for a combined equation: $\mathrm{Cu}^{2+}+2 \mathrm{H}^{+}+2 \mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{CuCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark \checkmark$ DO NOT ALLOW $2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $2 \mathrm{Cu}^{2+}+4 \mathrm{KI} \longrightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{~K}^{+}$ ALLOW Cu ${ }^{2+}+1^{-} \longrightarrow \mathrm{Cu}^{+}+1 / 2 \mathrm{I}_{2}$
FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=67.6 \%$, award 5 marks. Ignore any attempted equation in step 4 IF answer $=\mathbf{3 3 . 8} \%$ AND IF Cu ${ }^{2+} / /_{2}$ in step $\mathbf{4}$ equation shown with $1: 1$ molar ratio, award 5 marks for ECF $\begin{aligned} & \text { amount } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \text { used }=0.100 \times \frac{29.8}{1000}=2.98 \times 10^{-3} \mathrm{~mol} \\ & \text { amount } \mathrm{I}_{2}=1.49 \times 10^{-3} \mathrm{~mol} \\ & \text { OR amount } \mathrm{Cu}^{2+}=2.98 \times 10^{-3} \mathrm{~mol} \checkmark \\ & \text { amount } \mathrm{Cu}^{2+} \text { in original } 250 \mathrm{~cm}^{3}=10 \times 2.98 \times 10^{-3} \\ & =2.98 \times 10^{-2} \mathrm{~mol} \checkmark \\ & \text { Mass of } \mathrm{Cu} / \mathrm{Cu}^{2+} \text { in brass }=63.5 \times 2.98 \times 10^{-2} \mathrm{~g} \\ & =1.8923 \mathrm{~g} \checkmark \\ & \text { percentage } \mathrm{Cu} \text { in brass }=\frac{1.8923}{2.80} \times 100 \\ & =67.6 \% \checkmark \\ & \text { MUST be to one decimal place (in the question) } \end{aligned}$	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below Working must be to 3 SF throughout until final \% mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49 ECF answer above ECF 10 x answer above ECF 63.5 x answer above ALLOW 1.88 g $\text { ECF } \frac{\text { answer above }}{2.80} \times 100$ Answer must be to one decimal place ALLOW $\% \mathrm{Cu}=67.5 \%$ IF mass of Cu has been rounded to 1.89 g in previous step Common ECFs: 6.76\% x10 missing $\quad 3 / 5$ marks for calculation 2 d.p. MS states 1 d.p. 33.8\% IF Cu^{2+} / I_{2} in step 4 equation with 2:1 ratio OR not attempted, response, $4 / 5$ marks for calculation (moles Cu^{2+} incorrect)

